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ABSTRACT 

 
  The convergence and accuracy of the Dynamic Relaxation (DR) solutions for elastic 

large deflection response are established by comparison with various exact and approximate 

solutions. New numerical results are generated for uniformly loaded square laminated plates 

which serve to quantify the effects of shear deformation, length to thickness ratio, number of 

layers, material anisotropy and fiber orientation. 

 It was found that linear analysis seriously over predicts deflection of plates. The shear 

deflection depends greatly on a number of factors such as length to thickness ratio, degree of 

anisotropy and number of layers. As the degree of anisotropy increases, the plate becomes 

stiffer and when it is greater than a critical value, the deflection becomes virtually 

independent on the degree of anisotropy. It was also found that deflection of plates depends 

on the angle of orientation of individual plies and the size of load applied. 

Keywords: Deflections,  Stresses, laminates analysis, degree of anisotropy. 

___________________________________________________________________________

NOTATIONS 

a, b     Plate side lengths in x and y directions respectively. 
 6,2,1, jiA ji    Plate in plane stiffness. 

5544 , AA    Plate transverse shear stiffness. 

 6,2,1, jiD ji    Plate flexural stiffness. 


yxyx     Mid – plane direct and shear strains 


zyzx  ,     Mid – plane transverse shear strains. 

xyyx GEE ,,    In – plane elastic longitudinal, transverse and shear moduli. 

yzxz GG ,    Transverse shear moduli in the x – z and y – z planes respectively. 

yxyx MMM ,,    Stress couples. 

yxyx MMM ,,    Dimensionless stress couples. 
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yxyx NNN ,,    Stress resultants. 

yxyx NNN ,,    Dimensionless stress resultants. 

q    Dimensionless transverse pressure. 

yx QQ ,    Transverse shear resultants. 

vu ,    In – plane displacements. 

w    Deflections 
w   Dimensionless deflection 

zyx ,,    Cartesian co – ordinates. 

 ,    Rotations of the normal to the plate mid – plane  

yx    Poisson’s ratio 


zxyx  ,,    Curvature and twist components of plate mid – plane 

 
 
1 INTRODUCTION  
 
  The three dimensional theories of laminates in which each layer is treated as 
homogeneous anisotropic medium (Reddy [1]) are intractable as the number of layers 
becomes moderately large. Thus, a simple two dimensional theory of plates that accurately 
describes the global behaviour of laminated plates seems to be a compromise between 
accuracy and ease of analysis. Putcha and Reddy [2] classified the two dimensional analyses 
of laminated composite plates into two categories: (1) the classical lamination theory, and (2) 
shear deformation theories. In both theories it is assumed that the laminate is in a state of 
plane stress, the individual lamina is linearly elastic, and there is perfect bonding between 
layers. The classical laminated plate theory (CLPT) was the first theory formulated for the 
analysis of laminated plates by Reissner and Stavsky [3], in which the Kirchhoff-love 
assumption that normal to the mid surface before deformation remains straight and normal to 
the mid surface after deformation is used, but it is not adequate for the flexural analysis of 
moderately thick laminates. However, it gives reasonably accurate results for many 
engineering problems i.e. thin composite plates, as verified by Srinivas and Rao [4], Reissner 
and Stavsky [3], Hui – Shen Shen [5], Ji Fan He and Shunag – Wang Zheng [6]. This theory 
ignores the transverse shear stress components and models a laminate as an equivalent single 
layer. The classical laminated plate theory (CLPT) under predicts deflection as proved by 
Turvey and Osman {[7] – [9]}, and Reddy [1] due to the neglect of transverse shear strains. 
The errors in deflections are even higher for plates made of advanced filamentary composite 
materials like graphite epoxy and boron epoxy, whose elastic modulus to shear modulus 
ratios are very large. However, these composites are susceptible to thickness effects because 
their effective transverse shear moduli are significantly smaller than the effective elastic 
modulus along the fiber direction. This effect has been confirmed by Pagano [10], Taner 
Timarci and Metin Aydogdu [11] who obtained analytical solutions of laminated plates in 
bending based on the three dimensional theory of elasticity. They proved that classical 
laminated plated theory (CLPT) becomes of less accuracy as the side to thickness ratio 
decreases. In particular, the deflection of a plate predicted by CLPT is considerably smaller 
than the analytical value for side to thickness ratio less than 10. These high ratios of elastic 
modulus to shear modulus render classical laminate theory as inadequate for the analysis of 
composite plates. 
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 Many theories which account for the transverse shear and normal stresses are 
classified according to Phan and Reddy [12] into two major classes on the basis of the 
assumed fields as: (1) stress based theories, and (2) displacement based theories. The stress 
based theories are derived from stress fields, which are assumed to vary linearly over the 
thickness of the plate, and the displacement based theories which are derived from an 
assumed displacement field. The theory used in the present work comes under the class of 
displacement based theories. Extensions of these theories which account for higher order 
variations and applied to laminated plates, can be found in the work of Yang et al. [13], 
Whitney and pagano [14] and Phan and Reddy [12]. In this theory which is called first order 
shear deformation theory (FSDT), the transverse planes, which are originally normal and 
straight to the mid plane of the plate, are assumed to remain straight but not necessarily 
normal after deformation, and consequently shear correction factors are employed in this 
theory to adjust the transverse shear stress. Numerous studies involving the application of the 
first order theory to bending analyses can be found in the works of Reddy [15], Reddy and 
Chao [16], Prabhu Madabhusi – Raman and Julio F. Davalo [17], and Wang J. et al. [18]. 
 In the present work, a numerical method known as Dynamic Relaxation (DR) coupled 
with finite differences is used. The DR method was first proposed in 1960th, and then passed 
through a series of studies to verify its validity by Turvey and Osman {[7] – [9]}, and 
Rushton [19], Cassell and Hobbs [20], Day [21] and Aalami [22]. In this method, the 
equations of equilibrium are converted to dynamic equations by adding damping and inertia 
terms. These are then expressed in finite difference form and the solution is obtained through 
iterations. The optimum damping coefficient and time increment used to stabilize the solution 
depend on a number of factors including the properties of the stiffness matrix of the structure, 
the applied load, the boundary conditions and the size of the mesh used, etc…  
 
2 LARGE DEFLECTION THEORIES  
 

The equilibrium, strain, constitutive equations and boundary conditions are introduced 
below without derivation. 

 
2.1 Equilibrium equations: 
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2.2 Strain equations 
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 The large deflection strains of the mid – plane of the plate are as given below: 
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2.3 The constitutive equations   
The laminate constitutive equations can be represented in the following form: 
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Where 
i

N  denotes xN  , yN  and yxN  and iM  denotes xM , yM  and yxM . jiA , jiB  and jiD  

 6,2,1, ji  are respectively the membrane rigidities, coupling rigidities and flexural 

rigidities of the plate. 
j  Denotes 

yx 





 
,  and

xy 
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


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4544
, AA  And 

55
A  denote the 

stiffness Coefficients and are calculated as follows:- 
 
 

Where: 
ji

c  is the stiffness of a lamina referred to the plate principal axes and 
i

k  , 
j

k  are 

the shear correction factors. 
2.4 Boundary conditions 
 
Five sets of simply supported boundary conditions are used in this paper, and are denoted as 
SS1, SS2, SS3, SS4 and SS5 as has been shown in Fig. (1) below. 
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Fig. (1)  Simply supported boundary condition 
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3 VERIFICATION OF THE DYNAMIC RELAXATION (DR) METHOD  
 
Table (1) shows deflections, stress resultants and stress couples in simply supported (SS4) 
isotropic plate. It is apparent that the center deflections, stress couples and stress resultants 
agree very well with Aalami and Chapman [23]. The mid side stress resultants do not show 
similar agreement whilst the corner stress resultants show considerable differences. This may 
be attributed to the type of mesh used in each analysis. A set of thin plate results comparisons 
presented here with Rushton [19] who employed the DR method coupled with finite 
differences. The present results for simply supported (SS5) square plates were computed for 
two thickness ratios and are listed in table (2). In this instant, the present results differ slightly 
from those found in ref. [19]. Another comparison for simply supported (SS5) square 
isotropic plates subjected to uniformly distributed loads is shown in table (3) for deflection 
analysis of thin and moderately thick plates. In this comparison, it is noted that, the center 
deflection of the present DR analysis, and those of Azizian and Dawe [24] who employed the 
finite strip method are in fairly good agreement. 
  
A large deflection comparison for orthotropic plates was made with the DR program. The 
results are compared with DR results of Turvey and Osman [8], Reddy’s [25], and Zaghloul 
et al. [26]. For a thin uniformly loaded square plate made of material I which its properties 
are stated in table (4) and with simply supported in plane free (SS3) edges. The center 
deflections are presented in table (5) where DR showed a good agreement with the other 
three. 
  
A large deflection comparison for laminated plates was made by recomputing Sun and Chin’s 

results [27] for [ 
44 0/90 ] using the DR program and material II which its properties are cited 

in table (4). The results were obtained for quarter of a plate. The analysis was made for 
different boundary conditions and the results were shown in tables (6), and (7) as follows: 
The present DR deflections of two layered antisymmetric cross ply simply supported in plane 
fixed (SS5) plates are compared with DR results of Turvey and Osman [9] and with Sun and 
Chin’s values for a range of loads as shown in table (6). The good agreement found confirms 
that for simply supported (SS5) edge conditions, the deflection depends on the direction of 
the applied load or the arrangement of the layers. Table (7) shows a comparison between the 
present DR, and DR ref. [9] results, which are approximately identical.  

 
The comparisons made between DR and alternative techniques show a good 

agreement and hence the present DR large deflection program using uniform finite difference 
meshes can be employed with confidence in the analysis of moderately thick and thin flat 
isotropic, orthotropic or laminated plates under uniform loads. The program can be used with 
the same confidence to generate small deflection results. 
           
  The errors inherent in the DR technique are cited in Refs. {[28] – [34]} which include the 
discretization error which is due to the replacement of a continuous function with a discrete 
function, and there is an additional error because the discrete equations are not solved exactly 
due to the variations of the velocities from the edge of the plate to the center. Finer meshes 
reduce the discretization error, but increase the round – off error due to the large number of 
calculations involved. 
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Table (1) Comparison of present DR, Aalami and Chapman’s [23] large deflection 
results for simply supported (SS4) square isotropic plate subjected to uniform pressure  

q  S  cw  
 
 1
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0.6094 
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0.6234 

1.0775 
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0.2423 
0.2097 

1.1411 
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0.8613 
0.8783 

0.8418 
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2.2435 
2.2711 

0.5405 
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2.4122 
2.4084 

0.3177 
0.4551 

63.7 
1 
2 

1.0434 
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0.9930 
1.0114 

3.3151 
3.3700 

0.8393 
0.7564 

3.6014 
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0.4380 
0.6538 

S (1): present DR results  
S (2): ref. [23] results  
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 Table (2) Comparison of present DR, and Rushton’s [19] large deflection results for 
simply supported (SS5) square thin isotropic plate subjected to uniform pressure  
 

q  S  cw   11  

29.3 
1 
2 

0.7249 
0.7310 

5.9580 
6.2500 

91.6 
1 
2 

1.2147 
1.2200 

11.3249 
11.4300 

293.0 
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20.820 

S (1): present DR results 
S (2): ref. [19] results  
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Table (3) Comparison of the present DR, and Azizian and Dawe’s [24] large deflection 
results for moderately thick shear deformable simply supported (SS5) square isotropic 
plates subjected to uniform pressure  
 

q  S  cw  

0.92 
1 
2 

0.04106 
0.04105 

4.6 
1 
2 

0.19493 
0.19503 

6.9 
1 
2 

0.27718 
0.27760 

S (1): present DR results  
S (2): Azizian and Dawe [24] results.  
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Table (4) Material properties used in the orthotropic and laminated plate comparison 
analysis. 
 

Material 
yx EE /  yyx EG /  yxz EG /  yyz EG /  yx   2

5
2
4 kkSCF   

I 2.345 0.289 0.289 0.289 0.32 6/5  

II 14.3 0.5 0.5 0.5 0.3 6/5  

 
Table (5) Comparison of present DR, DR results of ref. [8], finite element results ref. 
[25] and experimental results ref. [26] for a uniformly loaded simply supported (SS3) 
square orthotropic plate made of material I  
 

q   1cw   2cw   3cw   4cw  

17.9 0.5859 0.5858 0.58 0.58 

53.6 1.2710 1.2710 1.30 1.34 

71.5 1.4977 1.4977 1.56 1.59 

(1): present DR results  
(2): DR results of ref. [8]. 
(3): Reddy’s finite element results [25]. 
(4): Zaghloul’s and Kennedy’s [26] experimental results as read from graph. 
 
Table (6) Deflection of the center of a two layered antisymmetric cross ply simply 
supported in plane fixed (SS5) strip under uniform pressure.   
 
 

q  S    90/01w    0/902w   0jiBw   1%   2%   3%  

18 
1 
2 
3 

0.6851 
0.6824 
0.6800 

0.2516 
0.2544 
0.2600 

0.2961 
131.4 
130.5 

- 15.0 
- 14.1 

172.3 
168.2 

36 
1 
2 
3 

0.8587 
0.8561 
0.8400 

0.3772 
0.3822 
0.3900 

0.4565 
88.1 
87.5 

- 17.4 
- 16.3 

127.7 
124.0 

72 
1 
2 
3 

1.0453 
1.0443 
1.0400 

0.5387 
0.5472 
0.5500 

0.6491 
61.0 
60.9 

- 17.0 
- 15.7 

94.0 
90.8 

S (1): present DR results  
S (2): DR results ref. [9]. 
S (3): Values determined from sun and chin’s results ref. [27]. 

(1):    www /100 1   

(2):    www /100 2   

(3):   221 /100 www   
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Table (7) Center deflection of two layered antisymmetric cross ply simply supported in 
plane free (SS1) plate under uniform pressure and with different aspect ratios

 18;01.0/  qah . 

 
 

ab /  S    90/01w    0/902w   0jiBw   1%   2%   3%  

5.0 
1 
2 

0.8691 
0.8683 

0.8718 
0.8709 

0.3764 
0.3764 

130.9 
129.1 

131.6 
130.2 

- 0.3 
- 0.3 

4.0 
1 
2 

0.8708 
0.8708 

0.8758 
0.8557 

0.3801 
0.3801 

129.1 
129.1 

129.1 
130.4 

- 0.6 
- 0.6 

3.0 
1 
2 

0.8591 
0.8593 

0.8677 
0.8678 

0.3883 
0.3883 

121.2 
121.3 

123.5 
123.5 

- 1.0 
- 1.0 

2.5 
1 
2 

0.8325 
0.8328 

0.8422 
0.8424 

0.3907 
0.3907 

113.1 
113.2 

115.6 
115.6 

- 1.15 
- 1.1 

2.0 
1 
2 

0.7707 
0.7712 

0.7796 
0.7799 

0.3807 
0.3807 

102.4 
102.6 

104.8 
104.9 

- 1.14 
- 1.1 

1.75 
1 
2 

0.7173 
0.7169 

0.7248 
0.7251 

0.3640 
0.3640 

97.0 
97.0 

99.1 
99.2 

- 1.0 
- 1.1 

1.5 
1 
2 

0.6407 
0.6407 

0.6460 
0.6455 

0.3335 
0.3325 

92.1 
92.7 

93.7 
94.1 

- 0.82 
- 0.70 

1.25 
1 
2 

0.5324 
0.5325 

0.5346 
0.5347 

0.2781 
0.2782 

91.4 
91.4 

92.2 
92.2 

- 0.4 
- 0.4 

1.0 
1 
2 

0.3797 
0.3796 

0.3797 
0.3796 

0.1946 
0.1949 

95.1 
94.8 

95.1 
94.8 

0.0 
0.0 

S (1): present DR results  
S (2): DR results Ref. [9]. 

(1):    www /100 1   

(2):    www /100 2   

(3):   221 /100 www   

 
 
4   NEW NUMERICAL RESULTS 
 
 It was decided to undertake some study cases and generate results for uniformly 
loaded laminated rectangular plates. The plates were assumed to be simply supported on all 
edges. The effects of transverse shear deformation, material anisotropy, orientation, and 
coupling between stretching and bending on the deflections of laminated plates are 
investigated. The material chosen has the following properties: 

3.0,/8265.4,/653.9,/9.137 222  xyxyyx mmkNGmmkNEmmkNE  . It is assumed that

yzxzxy GGG  . 
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Effect of load 

 The variations of the center deflections, 
c

w


 with load, q


 for thin and thick isotropic 

plates of simply supported in plane fixed (SS5) condition are given in Table (1), and Fig. (1). 
It is observed that, the center deflections of thin and thick plates increase with the applied 
load, and that the deflections of thick plates are greater than those of thin plates under the 
same loading conditions. The difference in linear deflection is due to shear deformation 
effects which are significant in thick plates. Whereas, the nonlinear difference of thin and 
thick plates, which are approximately coincident, implies that the shear deformation effect 
vanishes as the load is increased. 
 
Effect of length to thickness ratio 
 
 Table(2) and Fig.(2) contain numerical results and plots of center deflection versus 
length to thickness ratio of 4 – layered antisymmetric cross ply and angle ply square plates 

under lateral load  0.1q


 for simply supported (SS1) boundary condition. The maximum 

percentage difference in deflections for a range of length to thickness ratio between 10 and 
100 fluctuates between 35% for cross ply laminate and 73.3% for angle ply laminate as the 
length to thickness ratio increases to a value of  a/h = 40.0, and then becomes fairly constant. 
It is evident that shear deformation effect is significant for a/h < 40.0. It is obvious that shear 
deformation reduces as the length to thickness ratio increases. 
 
Effect of number of layers 
 
 Fig. (3) Shows a plot of the maximum deflection of a simply supported (SS5) 

antisymmetric cross ply   n
 90/0   8,4,3,2,1n  square plates under uniformly distributed 

load of a moderately thick plate (h/a = 0.1). The numerical results are given in Table (3). 
Two, four, six, eight, and sixteen layered laminates are considered. The results show that as 
the number of layers increases, the plate becomes stiffer and deflection becomes smaller. 
This is mainly due to the existence of coupling between bending and stretching which 
generally increases the stiffness of the plate as the number of layers is increased. When the 
number of layers exceeds 8, the deflection becomes independent on the number of layers. 
This is because the effect of coupling between bending and stretching does not change as the 
number of layers increases beyond 8 layers. 
 
Effect of material anisotropy 
 

The exact maximum deflections of simply supported (SS5) four layered symmetric 
cross ply and angle ply laminates are compared in Table (4) and Fig. (4) For various degrees 
of anisotropy. It is observed that, when the degree of anisotropy is small the deflection is 
large. As the degree of the anisotropy increases, the plate becomes stiffer. This may be 
attributed to the shear deformation effect which increases as the material anisotropy 
decreases. When the degree of anisotropy becomes greater than 40.0, the deflection becomes 
approximately independent on the degree of anisotropy. This is due to the diminishing of the 
shear deformation effects and the dominance of bending effects. 
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Effect of fiber orientation 

 The variation of the maximum deflection, 
c

w


 with fiber orientation of   a square 

laminated moderately thick plate is shown in Table (5) and Fig. (5). Four simply supported 
boundary conditions SS2, SS3, SS4 and SS5 are considered in this case. The nonlinear curves 
of SS2 and SS3 conditions show minimum deflection at  = 45o. However, this trend is 
different for a plate under SS4 and SS5 conditions in which the nonlinear deflection increases 
with . This is due to the in plane fixed edges in the latter case. Another set of results 

showing the variation of center deflections, cw


 with load q


 for a range of orientations is 

given in Table (6) and Fig. (6). They show the variations in the center deflection of thick 
laminates with wide range of loads for a simply supported (SS4), 4 layered antisymmetric 

square plate of orientation [  ,  ,  ,  ]. It is noticed from Fig. (6) that the deflection 
of thick laminates increases with the applied load as the angle of orientation is decreased (i.e. 

from 45  to 0 ) to a point where 7060  q  and then increases as the angle of orientation is 

increased beyond that point. This results in the inflection of the deflection curves at a point 
where 7060  q . This behaviour is caused by coupling between bending and stretching 

which arises as the angle of orientation increases.  
 
Table (1) Variation of central deflection with load, of thin and thick isotropic plates of 
simply supported (SS5) condition  
 

q  S  cw  

h /a = 0.02 h /a = 0. 2 

20 
1 
2 

0.8856 
0.5846 

1.0635 
0.6159 

60 
1 
2 

2.6562 
1.0138 

3.1906 
1.0262 

100 
1 
2 

4.4270 
1.2527 

5.3177 
1.2573 

140 
1 
2 

6.1979 
1.4275 

7.4448 
1.4279 

180 
1 
2 

7.9685 
1.5685 

9.578 
1.5662 

200 
1 
2 

8.8541 
1.6306 

10.6354 
1.6274 

S (1): Linear 
S (2): Nonlinear 
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Table (2) A comparison of dimensionless center deflections VS side to thickness ratio of 
a four layered antisymmetric cross ply and angle ply simply supported (SS1) square 
laminates under uniform unit lateral load  
 

ha /  
cw  

  90/0/90/0    45/45/45/45   

10 0.0148 0.0115 

20 0.0134 0.0097 

30 0.0132 0.0094 

40 0.0131 0.0092 

80 0.0130 0.0091 

100 0.0130 0.0091 

 
Table (3) Number of layers effect on a simply supported (SS5) antisymmetric cross ply 

  n
 90/0  square thick plate under uniformly distributed loads (h/a = 0.1)  

 

q  
cw  

  90/0   290/0 
  

3
90/0 

  
4

90/0 
  

8
90/0 

 

20 0.2953 0.2278 0.2250 0.2241 0.2232 

60 0.5287 0.4807 0.4458 0.4742 0.4727 

100 0.6725 0.6258 0.6201 0.6182 0.6165 

140 0.7791 0.7304 0.7242 0.7221 0.7202 

180 0.8639 0.8136 0.8071 0.8049 0.8029 

200 0.9009 0.8500 0.8433 0.8411 0.8490 

 
Subscripted values 2, 3, 4, and 8: No. of the arrangement of a two of layered laminate. 
 
 
 
Table (4) Effect of material anisotropy on the dimensionless center deflection of a four 
layered symmetric cross ply and angle ply simply supported thick laminates (SS5) 
under uniform lateral load.  
 

yx EE /  cw  

[ 0o /  90o / 0o / 90o] [ 45o / - 45o / 45o / 45o] 

2 1.1114 1.1114 

8 0.7610 0.7466 

14 0.6218 0.5962 

20 0.5410 0.5098 

30 0.4589 0.4242 

40 0.4076 0.3724 

50 0.3718 0.3374 
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Table (5) Effects of fiber orientation   on the deflection of a simply supported thick 
square plate  
 

  
cw  

SS2 SS3 SS4 SS4 

0 1.3706 1.2346 0.6511 0.6513 

15 1.3359 1.1769 0.7434 0.6713 

30 1.2438 1.0321 0.8173 0.7101 

45 1.1815 0.9056 0.8049 0.7267 

60 1.2438 1.0321 0.8173 0.7101 

75 1.3359 1.1769 0.7434 0.6713 

90 1.3706 1.2346 0.6511 0.6513 

 
Table (6) Variation of central deflection cw  with a high pressure range q  of a simply 

supported (SS4) four layered antisymmetric square plate of the arrangement 

    ///  with different orientations (h/a = 0.2). 

 

q  
cw  

900 or  
 7515 or  

 6030 or  
45  

20 0.2922 0.2799 0.2568 0.2466 

40 0.4268 0.4209 0.4098 0.4039 

60 0.5150 0.5141 0.5142 0.5135 

80 0.5826 0.5853 0.5943 0.5948 

100 0. 6382 0. 6438 0. 6603 0. 6685 

120 0. 6859 0. 6940 0. 7169 0. 7286 

160 0. 7660 0. 7779 0. 8114 0. 8292 

200 0.8326 0.8475 0.8896 0.9124 
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6 CONCLUSIONS 
 

A Dynamic relaxation (DR) program based on finite differences has been developed 
for large deflection analysis of rectangular laminated plates using first order shear 
deformation theory (FSDT). The plate, which is assumed to consist of a number of 
orthotropic layers, is replaced by a single anisotropic layer and the displacements are 
assumed linear through the thickness of the plate. A series of numerical comparisons have 
been undertaken to demonstrate the accuracy of the DR program. Finally, a series of new 
results for uniformly loaded thin, moderately thick, and thick plates with simply supported 
edges have been presented. These results show the following:- 

 
1. The linear theory seriously over predicts the deflection of plates. 
2. The deformations of a plate are dependent on bending and extension in the nonlinear 
theory, whereas they are dependent on bending alone in the linear theory. 
3. Convergence of the DR solution depends on several factors including boundary conditions, 
meshes size, fictitious densities and applied load. 

4. Deflection is greatly dependent on plate length to thickness ratio  ha /  at small loads, and 

it becomes almost independent on that when the load is large. 
5. As the number of layers in a plate increases, the plate becomes increasingly stiffer. 
6. As the degree of anisotropy increases, the plate becomes stiffer and when it is greater than 
40.0, the deflection becomes virtually independent on the degree of anisotropy. 
7. Deflection of plates depends on the angle of orientation of individual plies. An increase of 
angle of orientation results in a decrease in the deflection at small loads and an increase in 
deflection at large loads. 
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